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1. Overview

Recent developments in sensor device technology offer the possibility of deploying hundreds
of thousands or even millions of sensors and linking them wirelessly. One can envision
networks at two extremes [1]:

1. Low cost, low power, low bandwidth, battery powered microsensors, with limited
processing and communication capabilities, networked locally (with respect to
geography).

2. Sensors, processors, and actuators embedded in sensing and weapons platforms,
vehicles or soldiers, with far greater processing and communications capabilities,
organized in dynamical networks.

Each type of network will generate immense quantities of data which must be coordinated,
interpreted and acted upon. While optimal data fusion algorithms have been developed
for small, typically unconstrained, networks of sensors [2–4], very little is known about
data fusion in networks of 105–106 sensors. The goal of this project is to develop general
principles and specific algorithms for (near) optimal solutions to this problem. To build
a complete system, of course, our results would have to be integrated with smaller scale
algorithms on the single or few device level (for, e.g., target recognition and classification).

We have concentrated on localized processing algorithms for several reasons. First, in
the low power, low bandwidth network listed above, processing is constrained to be local.
Second, even with the greater capabilities in the embedded sensor network, it is computa-
tionally infeasible (NP-complete) to fuse all the available data optimally [5]. Nevertheless,
analogies with communication theory [6,7], specifically the FFT and decoding large block
length codes, suggest that efficient and near optimal solutions can be achieved with local,
hierarchical algorithms. Third, in dynamical networks, and particularly when coupled to
actuators, robustness to network damage and responsiveness to local conditions suggest
advantages to localized processing.

2. Accomplishments

2.1. Original goals

2.1.A. Majority algorithms for sensor fields

We began by considering a relatively simple scenario: a field of sensors randomly dis-
tributed across some area, tasked to report the presence of a tank battalion, for example,
but to ignore a single or small number of tanks. Suppose that the sensors have been
distributed randomly, from the air, perhaps, as shown in green in Figure 1. In the low
power, low bandwidth extreme, the sensors can detect the presence of a tank by, e.g., its
acoustical signature [8,9], and can broadcast that detection locally. Suppose further that
there are a smaller number of aggregating devices, shown in blue, with greater processing
and communications capabilities (possibly including GPS locators [10]) which receive the
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Figure 1. A random distribution of 25 sensors
(green), 5 aggregating devices (blue) and 1 root
device (black).

Figure 2. Each sensor is connected to the near-
est aggregating device, each of which connects to
the root.

signals from the nearest sensors and broadcast the results to a third layer of the hierarchy,
which aggregates their reports. Figure 2 shows the resulting communication network for
the random distribution of Figure 1; in this example there are 25 sensors, connected by
green lines to 5 aggregators, connected by blue lines to 1 (‘root’) device at the third level
of the hierarchy.

For devices with specific operating characteristics, one would want to optimize the
network architecture and processing, given costs associated with latency, and with false
positive and false negative responses. Our original goal was first to develop general princi-
ples which would apply to a variety of possible devices and costs—which could change over
time, and in response to strategic considerations, respectively. Some general principles can
be deduced from simple models: The simplest decision rule the network of Figure 2 might
attempt to implement is MAJORITY [11]. That is, if a majority of the 25 sensors detect
a tank, the report of the sensor field should be BATTALION, otherwise it should be NO

BATTALION. (We assumed for our initial simulations that the individual sensors always
give correct reports.) Notice that in this scenario we are asking the sensor field to provide
a crude solution to the ‘disaggregation’ problem. That is, under the assumption that the
sensors are distributed at a spatial scale such that each responds to O(k) tanks on the av-
erage (for k < 1), it is approximately distinguishing between numbers of tanks greater and
less than 25/2k. It is doing so, furthermore, with a network algorithm—without the signal
processing more commonly applied at the single or few device level to disaggregate—since
we are working in the limited computation, low bandwidth scenario.

Figure 3 illustrates an event to which the network responds correctly: 14 sensors—
shown in red—fire, which causes 3 of the aggregators to fire; since this is more than half,
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Figure 3. 14 of the sensors—shown in red—fire
and the network correctly reports the presence of
a battalion.

Figure 4. 13 of the sensors—shown in red—
fire but the network incorrectly reports that no
battalion is present.

the root correctly reports BATTALION. But this network is not infallible, even when we
assume that all the devices function correctly. Figure 4 illustrates an event to which the
network responds incorrectly: 13 sensors—shown in red—fire, but they only cause 2 of the
aggregators to fire, so the root responds NO BATTALION, a false negative.
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Figure 5. The percentage of erroneously pro-
cessed events, plotted as a function of the num-
ber of sensors which fire, for the sensor network
shown in Figures 2–4.

In our preliminary investigations, in-
stances like this were identified by simu-
lation. We have shown subsequently that
the number of these kinds of errors can
be calculated explicitly. The results are
shown in Figure 5, where the probability
of an error is plotted as a function of the
number of sensors which fire for the sensor
network of Figures 2–4. For small or large
numbers of firing sensors the network MA-

JORITY algorithm always correctly iden-
tifies BATTALION or NO BATTALION, but
for numbers near the 25/2k threshold the
error rate climbs to more than 1/3. These results are detailed in [12].

We have begun to produce a theoretical framework for this kind of analysis by iden-
tifying an equivalence with certain kinds of error correcting codes. Notice that each ag-
gregating device can be thought of as performing error correction on a repetition code:
if there are 5 sensors reporting to an aggregating device, for example, the corresponding
repetition code encodes a bit b ∈ {0, 1} as bbbbb. In the coding context, errors may flip
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some of the bits during transmission, and then MAJORITY decoding correctly identifies b
as long as the number of corrupted bits is no more than 2 = (5 − 1)/2, where 5 is the
Hamming distance between the codewords 00000 and 11111. In [13] we show that a hier-
archical network algorithm can be interpreted as decoding a concatenated error correcting
code. The largest number of firing sensors which is never misidentified as BATTALION (6
in Figure 5) is (d − 1)/2, where d is the distance of the concatenated code.

2.1.B. Extending logic programming for distributed sensor algorithms

We have also been working on foundational issues supporting the development of general
algorithms for sensor fusion. A first step is to extend the logic programming paradigm so
that it can be used as a platform for high level reasoning agents for sensor fusion problems.
Papers [14–16] are concerned with various questions motivated by recent developments in
Knowledge Representation, especially the appearance of a new generation of systems [17–
19] based on the so-called Answer Set Programming (ASP) paradigm [20–22]. Answer
Set Programming is a recent attempt to develop a logic-based formalism that can be used
in a variety of high level reasoning tasks. One theme of this work is develop efficient
programming engines that will allow the user to solve a variety of NP-search problems
[23] of the type that arise in variety of pattern matching problems in the context of sensor
fusion. For example, if we have a partial view of military vehicle, how can we match the
salient features that we can observe to known vehicles to decide exactly the type of vehicle
with which we are dealing?

More formally, a search problem is a set S of finite instances such that, given any
instance I ∈ S, there is a set SI of solutions to S for instance I. It is allowed that SI

is the empty set. For example, the search problem may be to find Hamiltonian paths in
a graph. Thus, the set of instances of the problem is the set of all finite graphs. Then,
given any instance, i.e., a graph G, SG is the set of all Hamiltonian paths of G. We say
that an algorithm solves the search problem S if it returns a solution s ∈ SI whenever SI

is non-empty and it returns the string “empty” otherwise. We say that a search problem
S is in NP if there is such an algorithm which can be computed by a non-deterministic
polynomial time Turing machine. We say that search problem S is solved by a uniform
logic program if there exists a single logic program PS , a polynomial time extensional
data base transformation function edbS and a polynomial time solution decoding function
solS(·, ·) such that for every instance I in S,

1. edbS(I) is a finite set of facts, i.e., clauses with empty bodies and no variables,

2. whenever solS(I) is non-empty, solS(I, ·) maps the set of stable models of the
edbS(I) ∪ P onto the set of solutions SI of I, and

3. if solS(I) is empty, then edbS(I) ∪ P has no stable models.

Our work has focused mostly on one particular ASP formalism, specifically, the Stable
Semantics for Logic Programs (SLP) [24], and its extensions. The underlying methods of
ASP are similar to those used in Logic Programming [25] and Constraint Programming
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[26,27]. That is, like Logic Programming, ASP is a declarative formalism and the semantics
of all ASP systems are based on logic. Like Constraint Programming, certain clauses of
an ASP program act as constraints. There is a fundamental difference between ASP
programs and Constraint Logic programs, however. That is, in Constraint Programming,
the constraints act on individual elements of the Herbrand base of the program while the
constraint clauses in ASP programs act more globally in that they place restrictions on
what subsets of the Herbrand base can be acceptable answers for program. For example,
suppose that we have a problem Π whose solutions are subsets of some Herbrand base H.
In order to solve the problem, an ASP programmer essentially writes a logic program P
that describes the constraints on the subsets of H which can be answers to Π. The basic
idea is that the program P should have the property that there is an easy decoding of
solutions of Π from stable models of P and that all solutions of Π can be obtained from
stable models of P through this decoding. The program P is then submitted to an ASP
engine such as smodels [18], dlv [19] or DeReS [17] which computes the stable models of
the program P . Currently, the systems based on ASP paradigm are being tested on the
problems related to planning, product configuration, combinatorial optimization problems
and other domains.

Our approach in this project is to use ASP as a platform for pulling together the
information contributed from a variety of sensors in a network monitoring a region for
possible enemy activity and allowing the system to “search” for fundamental patterns to
help identify individual objects, patterns of movement of groups of objects, and patterns
that suggest danger and the need for immediate actions. Part of our goal is to extend this
formalism to allow the system to reason about geographical regions or restricted areas of
space which we call Spatial Logic Programming [15]. We hope to have a student working
on implementing such a system on top of existing ASP engines this summer.

2.1.C. Hybrid system optimization techniques for agent-based sensor algorithms

.  .  .
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Figure 6. MACHA framework.

We have also continued our development
of hybrid systems and, in particular, the
development of a distributed agent-based
optimization network called the Multiple
Agent Hybrid Control Architecture
(MAHCA), first developed by Kohn and
Nerode [28]. This work is described in
[29,30]. The general framework in which
MAHCA operates is shown in Figure 6.
In a typical application that we have in
mind, the distributed process consists of
a global network of sensors and each agent
monitors a small local network of sensors.

The Multiple Agent Hybrid Control Architecture is implemented as a distributed
system composed of agents, and a communication network called the logic communication
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network. The architecture realizing this system operates as an on-line distributed theorem
prover. In general, the MAHCA architecture interacts with the system it monitors at a
series of update times ∆1 < ∆2 < . . .. These update times are a function of the application
and the next update time is determined by the interaction between the system and the
agents. At an update time, each active agent will receive information from a certain suite of
sensors and generate estimation or control actions as a side effect of proving an existentially
quantified subtheorem (lemma) which encodes the model of the system as viewed by the
agent. The conjunction of lemmas at each instant of time encodes the desired behavior of
the entire network. The number of agents in the network is variable. That is, the system
can spawn new agents and deactivate agents as a function of system demand. Each agent
of MACHA consists of five modules:

Planner: Constructs and repairs the agent’s optimization criterion.

Inferencer: Determines whether there is a nonempty solution set for the agent’s
optimization problem. If there is such a solution set, the Planner infers the appropriate
control actions, new state information and inter-agent information.

Adapter: Repairs failure terms and computes correction terms.

Knowledge Base: Stores and updates the agent’s knowledge.

Knowledge Decoder: Receives and translates data from the other agents.

In general, a hybrid system has a hybrid state, the simultaneous dynamical state
of the system and all digital control devices. Properly construed, the hybrid states will
form a differentiable manifold which Kohn and Nerode call the carrier manifold of the
system. To incorporate the digital states as certain coordinates of points of the carrier
manifold, we “continualize” the digital states [30,31]. That is, we view the digital states as
finite, real-valued, piecewise-constant functions of continuous time and then take smooth
approximations to them. This allows us to consider logical and differential or variational
constraints on the same footing, each restricting the points allowed on the carrier manifold.
This also allows us to use classical control and differential geometric techniques to develop
algorithms for sensor-agent networks. Part of our effort in the next two years will be
devoted to adapting such methods to sensor fusion problems like those considered by
Kohn, Nerode and Remmel [32].

Finally, index sets are ways to measure the complexity of many problems in logic,
combinatorics, and computer science. In [33] we investigate the connections between index
sets for ω-languages and index sets for computable analysis.

2.2. Revised goals

In January 2002 we met with John Lavery, who encouraged us to consider some modified
versions of the problems described in §2.1. In particular, he emphasized the disaggregation
problem, in the context of a substantially denser array of sensors than envisioned in §2.1.A
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(À 1 sensor/TANK rather than < 1 sensor/TANK) but with positive failure probabilities.
The simplest scenario consists of a sensor field with a single aggregating device (i.e.,
the network consists of exactly those sensors within transmission range of an aggregating
device) with the sensors dense compared to the detection area for a TANK. If we assume,
furthermore, that each sensor reports correctly with probability p < 1, independently, this
becomes a Bayesian estimation problem. That is, suppose k sensors fire. We wish to
determine Pr(TANK | k). Simple algebra gives:

Pr(TANK | k) =
Pr(k | TANK) Pr(TANK)

Pr(k)

=
Pr(k | TANK) Pr(TANK)

Pr(k | TANK) Pr(TANK) + Pr(k | NO TANK) Pr(NO TANK)
.

For this simple scenario, we can compute Pr(k | TANK) and Pr(k | NO TANK) analytically.
Pr(TANK), however, must be an external input to the algorithm, specified perhaps by the
current threat conditions or some other intelligence. Given this input and the number k
of sensors which fire, we can compute the probability that there is a TANK present in the
sensor field.

In general, if there is a set of events Ei among which we wish to distinguish, and
possible sensor network outputs Sj , the Bayes formula is

Pr(Ei | Sj) =
Pr(Sj | Ei) Pr(Ei)∑
i Pr(Sj | Ei) Pr(Ei)

.

For more complicated networks, i.e., with more than one aggregating device, or more levels,
the conditional probabilites for various sensor network outputs given various events may
not be possible to calculate analytically. With this in mind we have begun to construct a
simulator which can accommodate large numbers of sensors and aggregating devices, ar-
ranged randomly or not, networked into a multilevel hierarchy. The simulator incorporates
a flexible error model for the individual sensors, and allows simulation of various network
algorithms. Figure 7 shows a screenshot of the simulator. So far we have applied it only to
the simple scenario described above, in order that we could verify the code by comparison
with the analytic solutions. The next step is to simulate more complicated scenarios. In
particular, we believe that we can address the disaggregation problem with this system.

3. Future directions

This project has been running less than a year (it began in August 2001), and despite a slow
start, we believe that we have by now made substantial progress. We are eager to continue
with various aspects of this project: not only the immediate next steps mentioned in §2.1.B
and §2.2, but also several new directions. David Meyer, Jeff Remmel and Victor Marek have
been meeting this spring to discuss integrating the three components of this project: the
explicit network algorithms described in §2.1.A and §2.2, the logic programming formalism
described in §2.1.B, and the hybrid control architecture described in §2.1.C. We have also
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Figure 7. Screenshot of the sensor network simulator.

met recently with two defense industry scientists: Harry Schmitt and Ross Rosenwald of
Raytheon’s Missile Systems division. They are also interested in collaborating with us to
develop distributed sensor algorithms.
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